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Abstract-There is experimental evidence to support the idea that the inverse capacitance of very
thin structures tends toward a constant value instead of zero despite the prediction of the classical
linear theory (Mead, 1961, Phys. Rev. Lett. 6, 545-546; 1962, Phys. Rev. 128,2088-2093). Motivated
by Mindlin's explanation (1969, Int. J. Solids Structures S, 1197-1208) of this anomalous behaviour,
the analysis of this effect is here revisited. Specifically, new boundary conditions are proposed and
discussed, accounting for the metal~ielectric interface effect.

1. INTRODUCTION

In 1961 C. A. Mead observed a remarkable anomaly concerning the behaviour of very thin
structures such as Ta-Ta20s-Au and Ta-Ta20s-Bi. Afterwards, Mead and Maserjian
(1967) observed a similar anomaly in thin layers so composed: Al-Ti02-Al. These struc
tures, once arranged in plane parallel layers, behave like plane parallel capacitors where
the Ta20s and Ti02play the roles of the dielectric materials. The classical prediction is that
the capacitance should become infinite (and, of course, the inverse of the capacitance zero)
as the distance between the electrodes approaches zero. Despite this prediction the
experiments show that the inverse of the capacitance per unit surface tends toward a
constant value which is approximately 0.5-5 JlF cm- 2 (Ku and Ullman, 1964; Mead and
Maserjian, 1967). The explanation of such a phenomenon surely involves the metal-dielec
tric interface effect which becomes dominant for such short distances; Mead himself (1961,
1962) conjectured that the penetration of the electric field into the metal could be a possible
explanation. The occurrence of such a phenomenon as the penetration is extraneous to the
classical theory while it is foreseen by quantum mechanics and the estimated depth of pen
etration is of the order of one A (Mead, 1961; Mott, 1936, 1982). Following Mead's con
jecture Ku and Ullman (1963) stated the problem within the framework of the semi-classical
solid state physics. They considered the free electron density in the metal, which is known
by the Fermi-Dirac distribution function, and the corresponding energy known as the
Fermi energy. They argued that the electron density and the corresponding energy were
not uniform under the effect of an applied potential between the two faces of one of the
electrodes. From the mathematical point of view they solved the Poisson equation within
the metal and the Laplace equation within the dielectric, for the potential <p. They assumed
the usual classical condition for <p at the outer faces of the metal electrodes and at the
metal-dielectric interfaces, but the unusual condition at the metal-dielectric interface for
the electric field E = - <p': this was required to behave as at the interface between two
dielectric materials (Ku and Ullman, 1961). Finally, a formula for the capacitance was
deduced by them making use of the solution found for <p. In this formula the inverse of the
capacitance consists of the sum of two parts: one is the classical form, the second one a
correction term independent of the distance. Afterward, Maserjian and Mead (1967) pro
posed a general theory for the electric conduction across thin layers ofcrystallized structures,
a theory which is framed within the microscopic theory of semiconductors. In this broader
context they also proposed the explanation of the anomaly of the capacitance.

There is a general agreement that a quantity such as the macroscopic dielectric constant
is physically meaningful for short distances down to a tenth of an angstrom; one is then
encouraged to revisit the problem within the macroscopic description. This is what Mindlin
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(1969) did by re-stating the problem within the linearized theory ofthe polarization gradient
for deformable bodies. He offered a brilliant answer to the problem of the anomalous
capacitance and proposed a challenge to the experimentalists by showing the follow
ing: with reference to the solution he had found for 4> and for the polarization field P, the
inverse of the capacitance c; 1 tends effectively toward zero with xo, where 2xo is the
distance between the electrodes. But the graph of C; I versus xo, approaches to an asymp
tote as Xo -+ 00. The intercept of the asymptote with the ordinate axis is positive.
Mindlin (1969) concludes that it is very likely that the experimentalists had found the
asymptotic behaviour of C; 1 ; in fact appreciable deviations of the function C; 1 (xo) from
the asymptote are quite negligible down to the interested distances (~30 A). It is worth
noticing that the macroscopic theory of the polarization gradient takes into account the
microscopic structure of the crystalline lattice of the dielectric, to some extent (Maugin,
1988; Mindlin, 1969, 1972). In this sense Mindlin's approach is not so far from Maserjian's
and Mead's point of view. In the present note the problem is re-stated in a general form.
The solution for the electric potential and for the electric field is found in terms of the
polarization field P which is not specified at the beginning. With reference to this solution
we define a quantity which seems not to play any role in the classical linear case. To this
quantity we attribute the physical meaning of an extra charge at the metal-dielectric
interface. Within the theory of the polarization gradient (Maugin, 1988; Mindlin, 1972),
this quantity specializes in a form that furnishes the required boundary conditions at the
metal-dielectric interfaces. These boundary conditions involve the polarization field as well
as its first spatial derivative and Mindlin's condition for P at the interface is recovered from
them as a particular case. Then Mindlin's argument is re-proposed, though in a revised
form and within the context of the electrostatics of rigid bodies. The anomalous behaviour
of the capacitance is explained within this context, provided that the proposed boundary
conditions hold true. It should be emphasized that while Mindlin was concerned with the
elastic dielectric, we restrict ourselves to the rigid dielectric. The formulation of the problem
is rather simplified and, in addition, is devoid of the concepts of strains and stresses which
are inherent to deformable bodies. Nevertheless, the new boundary conditions could be
reasonably extended to the electro-elastic problem.

2. STATEMENT OF TWO PROBLEMS AND OF A CONJECTURE

We will consider the following problem: a homogeneous and isotropic dielectric
material is placed in a capacitor. Then we distinguish two cases: the dielectric fills the
whole capacitor, as shown in Fig. 1; second, the dielectric fills it only partially, as shown
in Fig. 2. The position of the metal plates will be denoted by xo, respectively, and the
position of the edges of the dielectric by ±Xh respectively. Thus, the inequality Xl ::::;; Xo

holds true. We assume that the system is of infinite transversal extent and we look for a
solution 4> in terms of the polarization field P which is assumed to be known. Both
problems are one-dimensional, X being the independent coordinate. We also assume that the
polarization has no transversal components.

Fig. 1. The capacitor filled by the dielectric.
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First problem

Fig. 2. The capacitor partially filled by the dielectric.

x

t/J" = {~'(X)
So

in IR/[ - xo, x 0]

(1)

t/J I± 00 bounded

The solution vanishes out of [- xo, xo] and

1 IX V (P)t/J(x) = - Pdx+ -x- -(x+xo)
So -Xo Xo So

V I
t/J'(x) = - + -(P(x)-(P»), XE( -xo,xo)

Xo So

where

I IXO

(J) == -2 J dx == the mean value ofJ across the capacitor
Xo -xo

eo == dielectric constant ofvacuum.

Second problem

(2)

(3)

(4)

(5)

(6)

t/J" = {~'(X)
So

(7)

(8)

-so[t/J'hx, = P-I 'fx,·

Conditions for t/J at +xo and at infinity as in the first problem.

(9)
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The solution is the following:

¢(X) =

and its derivative

v <F), x+xo
-x- --XI '---,

Xo 80 Xo

1 IX V <F)I X+X o- Fdx+-x---x,--,
80 -Xo Xo 80 Xo

V <F)I X-Xo
-x- --XI '--,
Xo 80 Xo

(10)

where

Xo 8 0 xo'

¢'=

Xo 80 Xo

(11)

1 IX 1

<F)l = -2 F dx.
XI -x,

The solution at the limit X I -+ Xo is

-V X== -Xo

1 IX V <F)¢,= - Fdx+-x---(x+xo) in (-xo,xo)
80 X o Xo 80

V X == Xo

V <F)

(12)

X == -Xo

¢;=
V <F) F(x).- - -- + -- in (-xo,xo)

Xo 80 80

V <F)
X == Xo.

X 8

(13)

Solution (13) coincides with (6) as long as we restrict ourselves to (-xo, +xo). Notice
that ¢, is continuous in [- Xo, xo] while ¢; suffers a discontinuity at ± Xo. It is worth
remarking that the mean value <¢') is equal to V/xoand is independent of the polarization
field just as in the classical case. In this latter case one usually assumes F = -80X¢', X
representing the electric susceptibility. Then expression (13) becomes:
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l
e~ in {-xo,xo}

A,'I _ Xo
'1"1 class -

V. )- m(-xo,xo
Xo
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(l3a)

where e = X+ I == the relative dielectric constant.
Bearing in mind that the electric charge (per unit surface) (1 at the metal plate is given

by the jump of the dielectric displacement, (1 may be evaluated in two ways. One, which is
based on formula (10), is by setting

The second way, which is based on formula (6), is by setting

(1 = [-eocjJ' +P]x = eo~ -<P).
o Xo

(14)

(14a)

Notice that in (14) we are approaching Xo "in the vacuum", while in (6) we are approaching
Xo "inside the dielectric". In the classical case we have <P) = -eo X(Vjxo), whence
(1 = eoe(Vjxo) by formula (14) and the classical expression for (1 is also recovered. In
order to simplify the notations we shall define the following quantities:

[cjJ']o == [cjJ']xo

[cjJi] 0 == [cjJi]xo'

Then, with reference to expression (13) we will consider the following difference:

(15)

It is worth remembering that - eo[cjJ']x 1 == P(x 1) represents the polarization charge (per unit
surface) at the dielectric-vacuum interface, while eo<cjJi) == eo(Vjxo) represents the electric
charge at the metal plate in the absence of the dielectric.

Our conjecture is that expression (15) represents the extra charge at the metal-dielectric
interface and that the quantity

eo {[cjJi] 0- [cjJ'] 1,0}

eo<cjJ')

must be a constant. Then by posing

and taking into account solution (13), the conjecture may be expressed as follows:

(16)

(17)

(18)

This means that the relative accumulation ofelectric charge at metal-dielectric interface
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with respect to the corresponding charge at the metal face in the absence of the dielectric
has to be considered a feature of the interface contact of the two materials.

3. THE ROLE OF THE POLARIZATION GRADIENT

In order to specify completely the dielectric response we will refer to Mindlin's
formulation and assume that Mindlin's equation holds inside the dielectric (Askar et al.,
1970; Maugin, 1988; Mindlin, 1969, 1972; Nelson 1979).

In the present case such an equation transforms into the following form

aP"(x)-aP(x)-</J/(X) = 0 (19)

where a and a are constitutive coefficients. They are required to be strictly positive in order
to preserve the positive definiteness of the polarization energy (Askar et al., 1970; Maugin,
1988; Mindlin, 1972). To eqn (19) we must add eqns (1) for the first problem or eqns (7)
for the second problem and the proper boundary conditions for each of them. Let us begin
with the second problem. Since the dielectric is separated by the metal, we shall put

P'(x) I±x, = 0

in accordance with the general theory (Mead, 1961, 1962; Mindlin, 1969).
In addition, the condition

P(x) = P( -x)

(20)

(21)

follows from the symmetry of the problem.
The solution of the problem is an easy task. P and </J' are constant fields and specifically:

(22)

(23)

By interpreting l/eoa as the electric susceptibility, solution (22) coincides with the classical
one in the open interval (-Xl, XI)' In order to choose the proper boundary conditions for
the polarization and for the gradient of polarization at the metal-dielectric interface in the
effective problem, we will refer to the limit solution of the associated problem, i.e. to the
formulae (12) and (13).

For the effective problem condition (20) is no longer justified and we suggest it is
substituted by condition (18). This condition in terms of gradient of polarization becomes
as follows:

(24)

and furnishes the boundary condition for the global problem expressed by eqn (19) and by
the second limit problem.

The problem is now completely formulated and the solution for P is the following:
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1
( 2 )( cosh JlX 1 tanh JlXo) )

P(x) = GO~ I:+;;;a coshJlxo + e;;a JlXo __1_

Xo (2 ) tanh JlXo Goa
1+ 1+-

Goa Jlx

where Jl = ~ (a+ ~).
IX GO
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(25)

A comparison with the classical linear case shows that expressions (16) and (17)
become:

I-I: = G+X and I: = -2X (26)

having introduced the dielectric constant Gand assumed X == l/Goa. Substituting these values
into formula (25) we recover the classical polarization field which is

v
P(x) = -GoX-,

Xo
(27)

Solution (25) also predicts the possibility of a positive response from P depending on the
value of I:.t While this is unpredicted by the classical linear theory (Maugin, 1988 ; Mindlin,
1969; Trimarco, 1989; Truesdell and Toupin, 1960), it becomes reasonable as far as the
internal structure dominates and the distribution of the electric charges inside the dielectric
crystal is not markedly affected by the applied voltage.

4. THE CAPACITANCE

We will refer to the classical definition of the capacitance Ca (per unit surface) of a
capacitor.

(28)

where 0" is the electric charge given by formulae (14) and (14a). With reference to expressions
(14) and (25) formula (28) becomes

1+ (1- I:) tanh JlXo

C = _Go_G . _---,-__---,----eJl_X_o__

a 2xo ( 2 ) tanhJlxo'
1+ 1+-

Goa JlXo

(29)

Since Ca must be a positive quantity, according to its physical meaning, a first restriction
follows from expression (29) :

I: ~ 2. (30)

With reference to (29), C; 1 as a function of Xo shows an asymptotic behaviour as Xo -+ 00 ;

the asymptote has a unit slope and the following value as Xo -+ 0 :

t We will see in the next section that the restrictions imposed on ~ are compatible with this possible response
of P.

SAS 29:13-E
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C-1 2 (~ 2)- "'+-o - P.BoB Boa'
(31)

This value is interpreted as the residual capacitance experimentally observed. With reference
to formula (31), one more restriction on the possible values of I: is

(32)

in order that expression (29) should not be negative, according to the physical meaning
attributed to it. Taking into account conditions expressed by (30) and (32) there results

Notice that the classical form

BOB
Ca Iclass = -2

Xo

(33)

(34)

is easily recovered by putting I: = -2X and X == I/Boa into expression (29).
A comparison with Mindlin's result shows that it coincides with the one expressed by

formula (30) provided that

2 1
--~I:~--.

Boa Boa
(35)

It is worth remarking that P results in being not negative under the restrictions imposed
by (35) for I:, with reference to formula (25). Positive values of P(xo) occur for
I: ~ - l/Boa and this fact may be interpreted as the occurrence of a "barrier" (Kittel,
1986).

We see from formula (31) that the residual capacitance Co decreases with I: increasing
from - I/Boa to 2. In addition the initial slope To of the graph C; 1 versus xo, which is
given by

2(1 + I/Boa)
To = 2-I: ' (36)

increases to infinity as I: -+ 2 and the deviation of C; I (xo) from its asymptote is quite
negligible within distance much shorter than the ones usually established. This fact may
suggest that the anomalous behaviour of the capacitance may occur for layers
thinner than 30 A.

There follows a table of values of Co depending on I: (Table I). In this table we refer
to two hypothetical materials whose relative dielectric constants are B = 10 and B = 20,
respectively. We are also reminded that lip. ~ 2 -;- 10 A (Askar et al., 1970).

Table I. Values of Co depending on 1:

6 = 10
1: Co (JlF/cm2

)

-16 5
-14 2.5
-12 1.7
-10 1.25
-8 I
-6 0.8
-4 0.7

o 0.53
I 0.51
2 0.5

6 = 20
1: Co

-38 10
-34 3.3
-30 2
-22 l.l
-20 I
-12 0.7
-4 0.55

o 0.55
I 0.49
2 0.48
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5. COMMENTS

The capacitance resulting from the formula is very close to one found by Mindlin since
the behaviour of Ca as a function of Xo is just the same, though the constants are different.
The constant:E introduced here lies within a range larger than that found by Mindlin (1969,
1972) and predicts a possible counter-polarization against the electric field. We believe that
:E may be evaluated within the microscopic physics ofsemiconductors with specific reference
to the binding energy (Kittel, 1986). This energy should be connected with the discontinuity
of the charge at the metal-dielectric interface as given by expressions (15) and (18).
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